Genetic ablation of calcium-independent phospholipase A(2)γ (iPLA(2)γ) attenuates calcium-induced opening of the mitochondrial permeability transition pore and resultant cytochrome c release.

نویسندگان

  • Sung Ho Moon
  • Christopher M Jenkins
  • Michael A Kiebish
  • Harold F Sims
  • David J Mancuso
  • Richard W Gross
چکیده

Herein, we demonstrate that calcium-independent phospholipase A(2)γ (iPLA(2)γ) is a critical mechanistic participant in the calcium-induced opening of the mitochondrial permeability transition pore (mPTP). Liver mitochondria from iPLA(2)γ(-/-) mice were markedly resistant to calcium-induced swelling in the presence or absence of phosphate in comparison with wild-type littermates. Furthermore, the iPLA(2)γ enantioselective inhibitor (R)-(E)-6-(bromomethylene)-3-(1-naphthalenyl)-2H-tetrahydropyran-2-one ((R)-BEL) was markedly more potent than (S)-BEL in inhibiting mPTP opening in mitochondria from wild-type liver in comparison with hepatic mitochondria from iPLA(2)γ(-/-) mice. Intriguingly, low micromolar concentrations of long chain fatty acyl-CoAs and the non-hydrolyzable thioether analog of palmitoyl-CoA markedly accelerated Ca(2+)-induced mPTP opening in liver mitochondria from wild-type mice. The addition of l-carnitine enabled the metabolic channeling of acyl-CoA through carnitine palmitoyltransferases (CPT-1/2) and attenuated the palmitoyl-CoA-mediated amplification of calcium-induced mPTP opening. In contrast, mitochondria from iPLA(2)γ(-/-) mice were insensitive to fatty acyl-CoA-mediated augmentation of calcium-induced mPTP opening. Moreover, mitochondria from iPLA(2)γ(-/-) mouse liver were resistant to Ca(2+)/t-butyl hydroperoxide-induced mPTP opening in comparison with wild-type littermates. In support of these findings, cytochrome c release from iPLA(2)γ(-/-) mitochondria was dramatically decreased in response to calcium in the presence or absence of either t-butyl hydroperoxide or phenylarsine oxide in comparison with wild-type littermates. Collectively, these results identify iPLA(2)γ as an important mechanistic component of the mPTP, define its downstream products as potent regulators of mPTP opening, and demonstrate the integrated roles of mitochondrial bioenergetics and lipidomic flux in modulating mPTP opening promoting the activation of necrotic and necroapoptotic pathways of cell death.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Methanol extract and fraction of Anchomanes difformis root tuber modulate liver mitochondrial membrane permeability transition pore opening in rats

Objective: Extracts of Anchomanes difformis (AD) are used in folkloric medicine to treat several diseases and infections. However, their roles in mitochondrial permeability transition pore opening are not known. Material and Methods: The viability of mitochondria isolated from Wistar rat liver used in this experiment, was assessed by monitoring their swel...

متن کامل

Activation of mitochondrial calcium-independent phospholipase A2γ (iPLA2γ) by divalent cations mediating arachidonate release and production of downstream eicosanoids.

Calcium-independent phospholipase A(2)γ (iPLA(2)γ) (PNPLA8) is the predominant phospholipase activity in mammalian mitochondria. However, the chemical mechanisms that regulate its activity are unknown. Here, we utilize iPLA(2)γ gain of function and loss of function genetic models to demonstrate the robust activation of iPLA(2)γ in murine myocardial mitochondria by Ca(2+) or Mg(2+) ions. Calcium...

متن کامل

Two distinct calcium-dependent mitochondrial pathways are involved in oxidized LDL-induced apoptosis.

OBJECTIVE Oxidized low-density lipoprotein (oxLDL)-induced apoptosis of vascular endothelial cells may contribute to plaque erosion and rupture. We aimed to clarify the relationship between the oxLDL-induced calcium signal and induction of apoptotic pathways. METHODS AND RESULTS Apoptosis was evaluated by biochemical methods, including studies of enzyme activities, protein processing, release...

متن کامل

Genetic ablation of calcium-independent phospholipase A(2)beta causes hypercontractility and markedly attenuates endothelium-dependent relaxation to acetylcholine.

Activation of phospholipases leads to the release of arachidonic acid and lysophospholipids that play prominent roles in regulating vasomotor tone. To identify the role of calcium-independent phospholipase A(2)beta (iPLA(2)beta) in vasomotor function, we measured vascular responses to phenylephrine (PE) and ACh in mesenteric arterioles from wild-type (WT; iPLA(2)beta(+/+)) mice and those lackin...

متن کامل

Bax-induced Cytochrome C Release from Mitochondria Is Independent of the Permeability Transition Pore but Highly Dependent on Mg2+ Ions

Bcl-2 family members either promote or repress programmed cell death. Bax, a death-promoting member, is a pore-forming, mitochondria-associated protein whose mechanism of action is still unknown. During apoptosis, cytochrome C is released from the mitochondria into the cytosol where it binds to APAF-1, a mammalian homologue of Ced-4, and participates in the activation of caspases. The release o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 287 35  شماره 

صفحات  -

تاریخ انتشار 2012